Aquatic Placement of Dredged Sediments: Interpreting Bioaccumulation

Andrew McQueen, PhD¹

Guilherme Lotufo, PhD¹
Burton Suedel, PhD¹
Scott Pickard²
Andrew Lenox²
David Moore, PhD¹
Katherine von Stackelberg, PhD³

¹Environmental Laboratory U.S. Army Engineer Research and Development Center

²U.S. Army Corps of Engineers, Buffalo District

³NEK Associates

GLDT Informational Webinar; November 17th, 2020

Outline

1. Overview of bioaccumulation in context of dredged material placement

2. Evaluation of bioaccumulation assessment factors

Introduction: Dredging and Bioaccumulation

- Mission requires compliance with applicable laws and regulations:
 - Address chemical, physical, and biological risks
- Consideration of bioaccumulation is required by:
 - Marine Protection Research and Sanctuaries Act (MPRSA)
 - Clean Water Act (CWA)
 - National Environmental Policy Act (NEPA)
- Dredge material bioaccumulation evaluations are a tiered process:
 - Ocean Testing Manual (OTM); Inland Testing Manual (ITM)

Benthic bioaccumulation

Bioaccumulation: Net uptake of a chemical from all sources following exposure over a set exposure period.

Bioavailable: Portion of the total quantity or concentration of a chemical in the environment that is potentially available for uptake by organisms

Sources of contamination:

Sediment

- Sediment particles (ingestion)
- Detritus
- Benthic prey
- Sediment porewater

Water column

- Overlying water
- Plankton

Introduction: Bioaccumulation Tiers

Evaluations are Tiered:

- Tier I: Using readily available information
- Tier II: Theoretical modeling (e.g. BSAF, theoretical bioaccumulation potential)
- Tier III: Well-defined, nationally accepted bioaccumulation testing procedures
- Tier IV: Case-specific field testing and risk assessment

Tier III: Bioaccumulation test

Under ITM and OTM, if DM not exempted from testing, sediment bioaccumulation testing is required for decision making (regional guidance may include a screening step)

Approach

- Conduct whole-sediment bioaccumulation tests
- Compare DM to reference/placement site
- Whole-body burden chemicals of interest in benthic organisms as endpoint

Test Design

- Time zero tissue analysis
- 28-day exposure
- No feeding
- Typically 5 replicates/treatment
- Measure tissue concentration at conclusion of exposure

Benthos diversity

Predator polychaetes

Filter-feeding clams

Burrowing amphipods

Freshwater oligochaetes

Test species

Desirable characteristics

- Sediment ingester
- Infaunal
- Tolerant of contamination and sediment characteristics
- Easily collected or cultured
- Inefficient metabolizer (PAHs)
- Adequate biomass

OTM: Use burrowing polychaete and a deposit-feeding bivalve mollusk

ITM: Use a single burrowing species (use of others is desirable)

Macoma nasuta

Lumbriculus variegatus

Alitta virens (formerly Nereis)

Neanthes arenoceodentata

Nephtys caecoides

Tier III: Bioaccumulation test termination and initial analysis

Bioaccum

- Collect all remaining/surviving organisms from exposure chambers
- Allow organisms to purge gut content or excise gut
- Obtain whole-organism chemistry data
- Statistically compare DM and reference site body residues

Bioaccumulative Contaminants of
Concern for Routine Tissue Evaluation

Total lipids	
Cadmium	PAHs
Copper	Pesticides
Selenium	PCBs
Mercury	Butyltins

Conceptual Site Model

• <u>Statistical comparison of tissue</u> concentrations:

Ho: Dredge material = Reference

Ha: Dredge material > Reference

Statistical versus Ecological Significance

If statistically significant then...

Decision Criteria	Ocean Disposal Testing Manual (OTM)	Inland Testing Manual (ITM)
1) Magnitude by which bioaccumulation exceeded reference	✓	
2) Magnitude by which bioaccumulation exceeded reference and comparable species in the vicinity of disposal site	✓	✓
3) Toxicological Importance		
4) Propensity to bioaccumulate or biomagnify		
5) Number of contaminants	\checkmark	\checkmark
6) Number of species		
7) Phylogenetic diversity		

If statistically significant then...

		Downdood FDF version of this document (FDF, 1886)		_
	Decision Criteria	Ocean Disposal Testing Manual (OTM)	Inland Testing Manual (ITM)	
	1) Magnitude by which bioaccumulation exceeded reference	✓	✓	
	2) Magnitude by which bioaccumulation exceeded reference and comparable species in the vicinity of disposal site			
	What magnitude of difference (MOD)	*	✓	
			\checkmark	
	is considered biological/ ecologically relevant?	\checkmark		

Interpreting Bioaccumulation Data Magnitude of Difference

Sources of variability

- Bioassay variability within lab (replicates): typically low
- Interlab bioassay variability
- Interlab analytical variability

Does statistical difference equate to biological/ecological significance?

ASTM (2016): "Although there is no consensus concerning what constitutes an acceptable minimum difference, it is suggested that the bioaccumulation experiment be designed to detect a two-fold difference between tissue residues in the test and control sediments or the test and reference sediments. A two-fold difference should provide a sufficient signal for ecological and human health concerns in most cases."

Mean, 1 SD and coefficient of variation for 5 replicates

Objectives

Evaluate the practical and theoretical functions of magnitude of differences (MODs) as decision criteria.

Informed by (2) objectives:

- 1. Identify the variance (as coefficient of variance [CV]) associated with bioaccumulation measures for common testing organisms (*M. nasuta, A. virens*; and *L. variegatus*) and bioaccumulative constituents
- 2. Evaluate bioaccumulation MODs in three case studies from different geographic regions: Great Lakes, New York Harbor, Gulf of Mexico

Methods: Data Sources and Analysis

Data Sources:

- Peer-reviewed literature (reported variance)
- Case Studies:
 - New York Harbor; A. virens
 - Gulf of Mexico; M. nasuta
 - Great Lakes; *L. variegatus*

Data Analysis:

- Descriptive statistics; coefficient of variance (CV)
- Magnitude of difference (MOD)
- Statistical analysis:
 - One-way analysis of variance (ANOVA); $\alpha = 0.05$
 - Follow-up pairwise comparisons (GraphPad Software V. 7.0).

Coefficient of Variance (CV)

$$CV = \frac{\sigma}{\mu} * 100\%$$

Magnitude of Difference (MOD)

$$MOD = \frac{tissue [C]_{DM}}{tissue [C]_{ref}}$$

Methods

- Bioaccumulation testing:
 - USEPA/USACE 1991; 1998
 - ASTM International (2016)
 - 28-d duration; n=5 chambers
 - Marine/ estuarine; Alitta virens and Macoma nasuta
 - Freshwater; Lumbriculus variegatus

Marine polychaete *Alitta virens*

Freshwater oligochaete Lumbriculus variegatus

Coefficient of Variance (CVs) example

Example of CVs:

A:

- Mean (μ): 300
- Std Dev $(\sigma) = 20$
- CV = 7%

B:

Mean (μ): 300

- Std Dev (σ): 50
- CV = 17%

$$CV = 7\%$$

$$CV = 17\%$$

$$CV = \frac{\sigma}{\mu} * 100\%$$

Magnitude of Difference (MOD) example

Example of CVs:

A: Reference Sediment

- Mean (μ): 300
- Std Dev $(\sigma) = 20$
- CV = 7%

B: Dredged Sediment

Mean (μ): 400

- Std Dev (σ): 20
- CV = 7%

$$MOD = 1.33$$

$$MOD = \frac{tissue [C]_{DM}}{tissue [C]_{ref}}$$

Results: Reported Coefficient of Variations (CVs)

Results: Reported Coefficient of Variations (CVs)

Results: Reported Coefficient of Variations (CVs)

Visualizing CVs and MODs

1) New York Harbor; A. virens

PCBsPAHsStatistically

Significant ($\alpha = 0.05$)

- Variance compared to MOD
 PCBs (n=12 congeners)
 - Median statistically sig. 16% (n=62)
 - Maximum CV 86% (n=71)
- Overlap between MOD 1 and 2:
 - Indicates potential for false positives (Type I error)

2) Gulf of Mexico; M. nasuta

Metals, Statistically
 Metalloids Significant (α = 0.05)

- Variance compared to MOD
 - Metals/ metalloids*
 - Median statistically sig. 9% (n=19)
 - Maximum CV 133%
- Overlap between MOD 1 and 2:
 - Indicates potential for false positives (Type I error)

*(Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Hg, Sb, Se, Zn)

3) Great Lakes; *L. variegatus*

O PCBs Statistically
Significant (α = 0.05)

- Variance compared to MOD
 - PCBs (n=12 congeners)
 - Median statistically sig. 15% (n=44)
 - Maximum CV 35%
- Overlap of statistical significance between MOD 1 and 2:
 - Indicates potential for false positives (Type I error)

Discussion

- Both OTM and ITM identify MODs as an assessment factor, but there
 is currently limited guidance on the practical application
- Data indicate that precision can be sufficient to detect 2-fold differences (compared to reference) in tissue concentrations
 - ASTM (2016) "...at least a 2-fold difference..."
- Variability within tests indicate that MODs >2 is a benchmark for evaluating statistical differences to minimize false positives (Type I error)
- Inter- and intra-laboratory comparisons are needed to better understand the relative precision and accuracy of bioaccumulation results

Conclusions

- Variability within tests indicate that MODs >2 is a benchmark for evaluating statistical differences to minimize false positives (Type I error)
- MODs can provide a useful benchmark, if laboratory and field variability and uncertainty are considered
- Assessment of bioaccumulation from dredge material should reflect the best available science to discern bioaccumulative risks

Resources

- Bioaccumulation Evaluation Publication
 - Environmental Monitoring and Assessment (2020):

https://doi.org/10.1007/s10661-020-8236-z

 Regional Testing Manual for the Great Lakes. 'Draft Final' available:

https://cdn2.cloud1.cemah.net/wpcontent/uploads/sites/38/2020/11/RegionalBeneficialUseManual Nov2020-draft-final.pdf Environ Monit Assess (2020) 192: 277 https://doi.org/10.1007/s10661-020-8236-z

Evaluation of dredged sediment for aquatic placement: interpreting contaminant bioaccumulation

Andrew D. McQueen : Guilherme R. Lotufo ·
Scott W. Pickard · Andrew M. Lenox · David W. Moore ·
Katherine von Stackelberg · Burton C. Suedel

Received: 27 November 2019 / Accepted: 23 March 2020 / Published online: 10 April 2020

This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Abstract The poter associated contamin associated with the iment. Laboratory bit attive infaunal organ and reference sedim for contaminant-reforedged sediment to vides statistical infifactors (e.g., the interpret results; hot plying these factors

Environmental Evaluation and Management of Dredged Material for Beneficial Use: A Regional Beneficial Use Testing Manual for the Great Lakes

U. S. Army Corps of Engineers Great Lakes Districts – Buffalo, Chicago, Detroit Engineer Research and Development Center – Environmental Laborator

November 202

THANK YOU!

QUESTIONS?

Contact Information

Andrew McQueen, PhD Research Biologist USACE ERDC

Andrew.d.mcqueen@usace.army.mil

